By Darren M. Ward, Keith H. Nislow, Carol L. Folt
Biological Conservation, Volume 141, Issue 1, January 2008, Pages 146-152, ISSN 0006-3207, DOI: 10.1016/j.biocon.2007.09.006.

Reintroduction of extirpated populations creates a unique context that can exacerbate the effects of interactions among species. Thus, reintroduced populations may be particularly vulnerable to predators and competitors, including native species with which they historically coexisted. In this study, we evaluated the effect of native fishes on survival of reintroduced Atlantic salmon (Salmo salar) in the Connecticut River basin, where the native salmon population is extinct. Juvenile salmon are stocked annually in many Connecticut River tributaries. We sampled salmon reintroduction sites across tributaries with different fish communities to determine whether native fish reduce the success of salmon reintroductions (N = 19 site-years). Increased density of slimy sculpin (Cottus cognatus), a native generalist predator, was associated with reduced recruitment of reintroduced salmon. Salmon first-summer survival declined with increased sculpin density across sites, and low first-summer survival led to reduced densities of overyearling salmon the subsequent year. Hierarchical partitioning analysis showed that the negative relationship between sculpin and salmon was independent of potentially confounding variation in other fish community or habitat characteristics. Negative effects of native, historically-sympatric species, particularly generalist predators, can impede restoration of extirpated populations.
Keywords: Context dependent; Cottus cognatus; Generalist predator; Population restoration; Reintroduction success; Salmo salar

More details...